Q.P. Code: 18HS0834

Reg. No: SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech II Year I Semester Supplementary Examinations Feb-2021 MATHEMATICS-III (Electronics & Communication Engineering) Time: 3 hours Max. Marks: 60 **PART-A** (Answer all the Questions $5 \times 2 = 10$ Marks) Write the formula to find a cube root of a number by Newton Raphson's method. 1 a 2MWrite the standard five-point formula. 2MFind $L(e^{at} \cosh bt)$. 2M2MFind the Fourier sine transform of $\frac{1}{2}$. 2MFind the particular integral of $4r + 12s + 9t = e^{3x-2y}$. **PART-B** (Answer all Five Units $5 \times 10 = 50 \text{ Marks}$) UNIT-I Find the root of the equation $xe^x = 2$ by using regula-falsi method. 10M 3 Using Newton's forward interpolation formula and the given table of values 5M 1.1 1.3 1.5 1.7 \boldsymbol{x} $f(x) \mid 0.21 \mid 0.69 \mid 1.25 \mid 1.89 \mid 2.61$ Obtain the value of f(x) when x = 1.4. **b** Use Newton's backward interpolation formula to find f(32) given f(25)=0.2707, **5M** f(30)=0.3027, f(35)=0.3386, f(40)=0.3794. UNIT-II 4 Using Taylor's series method find an approximate value of y at x = 0.2 for the D.E. 10M $y'-2y=3e^x$, y(0)=0. Compare the numerical solution obtained with exact solution. Using the R-K method of 4^{th} order find y(0.1), y(0.2), y(0.3) given that 10M $\frac{dy}{dx} = 1 + xy, y(0) = 2.$ UNIT-III **a** Find $L(e^{-3t}[2\cos 5t - 3\sin 5t])$ 5M **5M b** Find the Laplace transform of $f(t) = \int_{0}^{\infty} e^{-t} \cos t \ dt$.

Using Laplace transform method to solve $y'' - 3y' + 2y = 4t + e^{3t}$ where

v(0) = 1, v'(0) = 1.

10M

Q.P. Code: 18HS0834

R18

10M

UNIT-IV

Find the Fourier sine and cosine transforms of $f(x) = \frac{e^{-ax}}{x}$, a > 0. Hence show that

 $\int_{0}^{\infty} \frac{e^{-ax} - e^{-ax}}{x} \sin sx \, dx = \tan^{-1} \left(\frac{s}{a}\right) - \tan^{-1} \left(\frac{s}{b}\right).$

OR

Find the inverse Fourier sine transform of f(x) of $F_s(p) = \frac{p}{1+p^2}$.

10M

UNIT-V

10 a Solve x(y-z)p + y(z-x)q = z(x-y).

5M

b Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.

5M

OR

11 A tightly stretched string with fixed end points x=0 and x=l is initially at rest in its equilibrium position. It is set vibrating by giving each point a velocity kx(l-x). Find the displacement of the string at any distance x from one end at any time t.

END